join-irreducible - significado y definición. Qué es join-irreducible
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es join-irreducible - definición

PARTIALLY ORDERED SET THAT ADMITS GREATEST LOWER AND LEAST UPPER BOUNDS
Lattice theory; Bounded lattice; Lattice (algebra); Lattice (order theory); Lattice homomorphism; Lattice Homomorphism; Lattice Automorphism; Lattice automorphism; Lattice Endomorphism; Lattice endomorphism; Lattice Isomorphism; Lattice isomorphism; Sublattice; Lattice order; Conditionally complete lattice; Complement (order theory); Jordan–Dedekind chain condition; Jordan-Dedekind chain condition; Jordan-Dedekind property; Jordan-Dedekind lattice; Jordan-dedekind property; Jordan-dedekind lattice; Jordan–Dedekind lattice; Partial lattice; Join-irreducible; Meet-irreducible; Join-prime; Meet-prime; Separating lattice homomorphism; Complementation (lattice theory); Complement (lattice theory)
  • '''Pic.&nbsp;6:'''  Non-lattice poset: <math>c</math> and <math>d</math> have no common upper bound.
  • '''Pic.&nbsp;10:''' Smallest non-distributive (but modular) lattice M<sub>3</sub>.
  • '''Pic.&nbsp;9:''' Monotonic map <math>f</math> between lattices that preserves neither joins nor meets, since <math>f(u) \vee f(v) = u^{\prime} \vee u^{\prime}= u^{\prime}</math> <math>\neq</math> <math>1^{\prime} = f(1) = f(u \vee v)</math> and <math>f(u) \wedge f(v) = u^{\prime} \wedge u^{\prime} = u^{\prime}</math> <math>\neq</math> <math>0^{\prime} = f(0) = f(u \wedge v).</math>
  • '''Pic.&nbsp;11:''' Smallest non-modular (and hence non-distributive) lattice N<sub>5</sub>. <br>The labelled elements violate the distributivity equation <math>c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b),</math> but satisfy its dual <math>c \vee (a \wedge b) = (c \vee a) \wedge (c \vee b).</math>
  • '''Pic.&nbsp;7:''' Non-lattice poset: <math>b</math> and <math>c</math> have common upper bounds <math>d, e,</math> and <math>f,</math> but none of them is the [[least upper bound]].
  • '''Pic.&nbsp;8:''' Non-lattice poset: <math>a</math> and <math>b</math> have common lower bounds <math>0, d, g, h,</math> and <math>i,</math> but none of them is the [[greatest lower bound]].

Casus irreducibilis         
ONE CASE WHEN SOLVING A CUBIC EQUATION
Irreducible Case; Irreducible Case (cubic); Irreducible cubic
In algebra, casus irreducibilis (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e.
left outer join         
  • A Venn Diagram representing the Left Join SQL statement between tables A and B.
  • 
A Venn Diagram representing the Right Join SQL statement between tables A and B.
  • A Venn Diagram representing the Full Join SQL statement between tables A and B.
SQL CLAUSE
Outer join; Inner join; Join algorithm; Cross join; Equivalence join; Full outer join; Left outer join; Right outer join; Semi join; SQL join; Sql join; Database join; Join (sql); Join (database); Equijoin; Group join; Left join; Right join; Cartesian join; Table join; Query (database); Natural join (SQL); JOIN (SQL); Self-join; Join sql; Join statement; Inner join sql; Sql inner join; Equi-join; Straight join
join         
WIKIMEDIA DISAMBIGUATION PAGE
JOIN; Joining; Joins; Join (disambiguation); Joined; Join (command); Joining (disambiguation)
1. <database> inner join (common) or outer join (less common). 2. <theory> least upper bound. (1998-11-23)

Wikipedia

Lattice (order)

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These lattice-like structures all admit order-theoretic as well as algebraic descriptions.

The sub-field of abstract algebra that studies lattices is called lattice theory.